Neuroprotective Properties of Afobazol in Vitro

T. A. Zenina, I. V. Gavrish, D. S. Melkumyan, T. S. Seredenina, and S. B. Seredenin

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 140, No. 8, pp. 161-163, August, 2005 Original article submitted November 16, 2004

The effects of a novel selective anxiolytic afobazol on survival of HT-22 neurons were studied in the model of oxidative stress and glutamate toxicity. In both models, the neuroprotective effect of afobazol was established.

Key Words: afobazol; oxidative stress; glutamate toxicity; neuroprotection

Afobazol (2-[2-(morpholino)-ethylthio]-5-etoxybenzi-midazole dihydrochloride) was synthesized in our institute [4]. Experimental and clinical studies revealed selective anxiolytic properties of this preparation [4]. Afobazol possesses antioxidant property, inhibits activity of neuronal NO-synthase, prevent stress-induced disturbances in the regulation of binding in the benzodiazepine site of the GABA_A-receptor complex [1,4,5]. Injection of this agent in anxiolytic doses to rats before and after ligation of the middle cerebral artery decreased the damaged area [3]. Therefore, three mechanisms (antiradical action, regulation of NO synthesis and GABA-transmission) can underlie the neuro-protective properties of this drug.

Our aim was to evaluate the effects of afobazol on the models of oxidative stress and glutamate toxicity used in studies of neurodegenerative processes [7,9].

MATERIALS AND METHODS

Experiments were carried out on HT-22 cell (immortalized cells from mouse hippocampus) [10]. The cells were incubated in DMEM medium containing 5% FCS. Oxidative stress was modeled by adding 1.5 mM $\rm H_2O_2$ with 30-min incubation at 37°C in a $\rm CO_2$ -incubator (5% $\rm CO_2$). Then this medium was replaced with normal ($\rm H_2O_2$ -free) culture medium. After 4 h the cells

Department of Pharmacological Genetics, V. V. Zakusov State Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow. *Address for correspondence:* niipharm@mail.ru. D. S. Melkumyan

were washed and their viability was assessed using MTT (3-(4,5-dimethylthiazol-2-il)-2,5-diphenyltetrazolium bromide) test [8]. Glutamate toxicity was modeled by adding 5 mM glutamine acid to the culture medium [10]. After 8-h incubation the cells were washed. Vitality (the survival rate) of the cells was assessed in 24 h [6,10]. Optical density was measured at λ =600 nM with Elisa Reader spectrophotometer. Neuroprotective affect of afobazol at final concentrations of 10^{-8} and 10^{-5} M was tested by adding the drug to the culture medium 24 h and 30 min before and immediately after destructive stimulation. The data were analyzed statistically using Microsoft Excel software and Student's t test.

RESULTS

Addition of H₂O₂ to the cell culture significantly decreased neuronal survival rate to 26% (Fig. 1). These changes agree with previous reports [8] and confirm reproducibility of the method. Preventive introduction of afobazol in the examined concentrations enhanced the survival rate of neurons subjected to oxidative stress (Fig. 1, *a*). When the drug was introduced into the culture medium 30 min before H₂O₂, the lower concentration (10⁻⁸ M) was efficient, and its protective effect was more pronounced (Fig. 1, *a*). Afobazol added into the culture medium immediately after washout from H₂O₂ also exerted the protective effect in all concentrations (Fig. 1, *b*). These data agree with previous data on the protective effect of afobazol during stimulation of ROS generation [4].

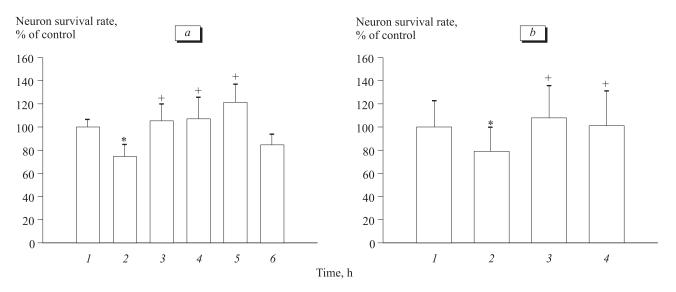
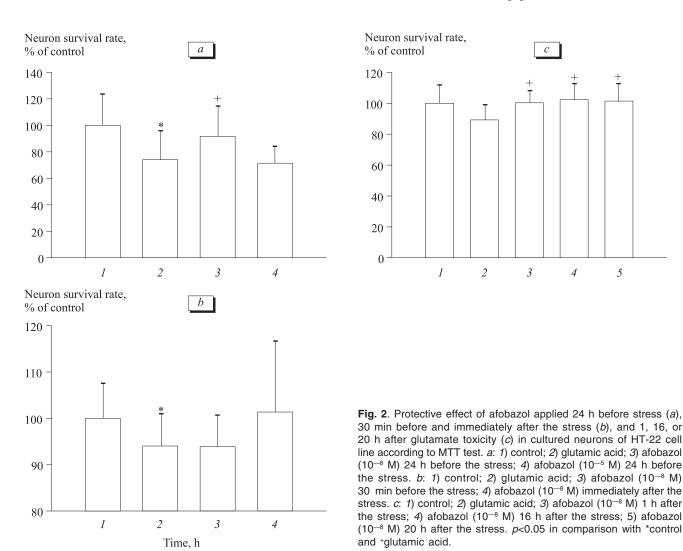



Fig. 1. Protective effect of afobazol (a) applied 24 h or 30 min before and (b) immediately after oxidative stress in cultured neurons of HT-22 cell line according to MTT test. a: 1) control; 2) H₂O₂; 3) afobazol (10⁻⁸ M) 24 h before stress; 4) afobazol (10⁻⁵ M) 24 h before stress; 5) afobazol (10⁻⁸ M) 30 min before stress; 6) afobazol (10⁻⁵ M) 30 min before stress. b: 1) control; 2) H₂O₂; 3) afobazol (10⁻⁸ M) immediately after stress; 4) afobazol (10⁻⁵ M) immediately after stress. p<0.05 in comparison with *control and * \dot{H}_{o} \dot{O}_{o} .

5

Glutamic acid reduced neuron viability by 25%, which agree with previous data [10]. When afobazol (10⁻⁸ M) was introduced into the medium 24 h before glutamic acid, it exerted a protective effect (Fig. 2, a). In the following tests, we used the same concentration of the drug. When afobazol was added to the culture medium 30 min before or immediately after glutamic acid, it was inefficient (Fig. 2, b). However, afobazol added 1, 16, or 20 h after damage to cells produced a pronounced protective effect: in these cases, the survival rate was equal to that in the control (Fig. 2, c). The protective effect of afobazol after treatment with glutamic acid in vitro agrees with previously established in vivo protective effect of this drug, when it was applied 3 or 6 h after occlusion of the middle cerebral artery [3].

Thus, when used in concentrations similar to those established in blood plasma after systemic administration of the drug in therapeutic doses, afobazol exerted a direct protective effect during damage to hippocampal neurons produced by H_2O_2 or glutamic acid. The differences in the protective action of anxiolytic afobazol in the used experimental models attest to involvement of different protective mechanisms. Since

both oxidative stress and glutamate toxicity are considered as important mechanisms of pathogenesis leading to cerebral ischemia [2], it seems necessary to evaluate the effects of afobazol in the ischemic models in vivo.

REFERENCES

- M. G. Balasanyan, Med. Nauka Armen., 42, No. 3, 25-30 (2002).
- 2. E. I. Gusev and V. I. Skvortsova, *Cerebral Ischemia* [in Russian], Moscow (2001).
- 3. R. S. Mirzoyan, A. V. Topchyan, and M. G. Balasanyan, *Eksp. Klin. Farmakol.*, **59**, No. 5, 62-64 (1996).
- S. B. Seredenin, T. A. Voronina, G. G. Neznamov, et al., Vestn. Ross. Akad. Med. Nauk, No. 11, 3-9 (1998).
- M. G. Balasanyan, A. S. Kanayan, and A. V. Thopchyan, *Acta Physiol. Hung.*, 89, No. 1-3, 198 (2002).
- J. F. Kerr, G. C. Gobe, C. M. Winterford, and B. V. Harmon, *Meth. Cell. Biol.*, 46, 1-27 (1995).
- 7. J. A. Knight, Ann. Clin. Lab. Sci., 27, No. 1, 11-25 (1997).
- 8. P. Maher and J. B. Davis, *Neuroscience*, **16**, 6394-6401 (1996)
- 9. A. A. Petersen, K. E. Larsen, G. G. Behr, et al., Brain Res. Bull., 1, 331-335 (2001).
- S. Tan, M. Wood, and P. Maher, J. Neurochem., 71, No. 1, 95-105 (1998).